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Abstract

Statistical approach often provide techniques in exploring more on the algebraic properties of
finite groups. In this paper, two new group probabilities are defined in which the group ele-
ments having certain common characteristic are considered. Let G be a finite group, the order
product prime probability is defined as the probability that two randomly selected elements x
and y inG satisfy |x||y| = ps and the order product prime commutativity degree is the probabil-
ity that elements satisfying the above property commutes. Some formulas for computing these
probabilities for dihedral groups are obtained.
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1 Introduction

The idea of group probability was first introduced by [10]. The probability that a pair of ele-
ments in a finite groupG commute is called as the commutativity degree of the group and denoted
as P (G). AfterMiller’s work, many researchers have developed interest and various achievements
has beenmade, for instance [5] worked on symmetric groups for their commutativity degrees. [6]
used a different way to compute the commutativity degree ofGwhere he found that the commu-
tativity degree of G is equal to the number of conjugacy classes divides the order of G. By some
calculations, [6] and [9] obtained the maximum value of the commutativity degree of finite non-

abelian groups which is P (G) ≤ 5

8
. Besides that, many other results on the upper and lower

bounds for various probability have been found, for example [16] have obtained the lower bound
of the commutativity degree of groups. [8] studied the probability that the commutator of two
group elements is equal to a given element which is called the g-commutativity degree.

More recently, [12] obtained the exact value of the commutativity degree of the generalized
quaternion groups, dihedral groups, semidihedral groups and quasi dihedral groups. More re-
searches related to commutativity degree of groups and their extension can be found in [[11],
[15], [14], [13], [4], [7]]. The previous concepts of the mention researches are strictly associated
with the conception of commutativity degree of a group. On the other side, in 2018, [1] intro-
duced the coprime probability of a group where it is defined as the probability of a random pair
of elements in a group G is coprime which is the greatest common divisor of the order of x and y
inG is equal to one. The authors found the probability for p-groups and for some dihedral groups.
Later in 2019, Zulkifli and Mohd Ali in [21] and [20] made an extensive research on the coprime
probability in which the scope of the group is on the nonabelian metabelian groups of order less
than 24 and order 24, respectively.

Besides the probability of groups, there weremany researches have been done in exploring the
dihedral groups. These includes the researches by [19], [18] and [17].

However, there are no studies on the probabilities for finite groups by considering the relationship
between the product of the order of the elements and aprimepower. Accordingly, twonewnotions
called the order product prime probability and the order product prime commutativity degree of
groups are introduced in this research. Groups that are considered in this research only the finite
dihedral groups and p-groups where p is prime.

2 Notations and Preliminaries

Some basic concepts, notations and preliminaries result that are needed in this research are
given in this section starting with the definition of dihedral groups given by [3].

Definition 2.1. For n ≥ 3, the n-th dihedral group is defined as a group consists of rigid motions of a
regular n-gon, denoted by Dn. The dihedral groups, Dn of order 2n (or degree n) can be presented in a
form of generators and relations given as follows:

Dn = 〈a, b | an = b2 = e, ba = a−1b〉.

Firstly, remarks that all groups considered in this research are finite and the investigation cov-
ered all dihedral groups of certain degrees. In this research, the identity of a group G is denoted
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by e, the cyclic groups of order n by Zn, the order of a groupG by |G| and the order of an element
x in G by |x|. Furthermore, the result on the commutativity degree of dihedral group Dn which
is given by [2] as in Theorem 2.1 is needed for the following section is stated in this section.

Theorem 2.1. LetDn be the dihedral group of degree n. Then the commutativity degree ofDn is P (Dn) =
n+ 3

2|Dn|
if n is odd and P (Dn) =

n+ 6

2|Dn|
if n is even.

3 Order Product Prime Probability

In this section, a new definition which is the order product prime probability of a group is
given. Later, some results on dihedral groups and p-groups are given in general.

Definition 3.1. Let G be a finite group. The probability that two randomly selected elements x, y ∈ G
satisfy |x||y| = ps for some prime p that divides |G| where s is a non-negative integer, is define as

Pop(p)(G) =

∣∣∣{(x, y) ∈ G×G
∣∣ |x||y| = ps}

∣∣∣
|G|2

.

Example 3.1. Consider D3 as the dihedral group of order six that is D3 = {e, a, a2, b, ab, a2b}
where |e| = 1, |a| = |a2| = 3, and |b| = |ab| = |a2b| = 2. Here, 2 and 3 are the prime divisors of |D3|.
Next, ∣∣∣{(x, y) ∈ D3 ×D3

∣∣ |x||y| = 2s
∣∣∣ = ∣∣∣{e, b, ab, a2b}× {

e, b, ab, a2b
}∣∣∣∣∣∣{(x, y) ∈ D3 ×D3

∣∣ |x||y| = 3s
}∣∣∣ = ∣∣∣{e, a, a2}× {

e, a, a2
}∣∣∣.

Therefore, Pop(2)(D3) =
42

4 · 9
=

4

9
and Pop(3)(D3) =

32

4 · 9
=

1

4
.

Next, in Theorem 3.1, Theorem 3.2, Theorem 3.3 and Theorem 3.4, the probability that two
randomly selected elements x, y in a group, satisfy |x||y| = 2s, where s is non-negative integer for
dihedral groups are given.

Theorem 3.1. LetDn be a dihedral group such that n = qm, q 6= 2, for some positive integerm and prime

number q, then Pop(2)(Dn) =
(n+ 1)2

4n2
and Pop(q)(Dn) =

1

4
.

Proof: Let Dn = 〈a, b | an = b2 = e, ba = a−1b〉 where n = qm, q 6= 2 where |Dn| = 2qm. Then,
2 divide |Dn|. Notice that |b| = |akb| = 2, 1 ≤ k ≤ n − 1, and 2 does not divide qm for any
m since q 6= 2. Moreover,

∣∣〈a〉∣∣ = n = qm, so each of the rotations has order a power of q, this
implies that non of nontrivial rotations can pair off with any of the reflections so that the product
of their orders gives 2s where s is non-negative integer. Thus the pairs of elements in Dn × Dn

whose orders product yields 2s are exactlymembers of the collection {e, b, akb}×{e, b, akb}, where
1 ≤ k ≤ n− 1. Therefore,∣∣∣{(x, y) ∈ Dn ×Dn

∣∣ |x||y| = 2s
}∣∣∣ = ∣∣{e, b, akb}× {

e, b, akb
}
| = (n+ 1)2.
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Thus, the order product prime probability of Dn with respect to 2 isPop(2)(Dn) =
(n+ 1)2

4n2
.

Another prime divisor of |Dn| is q. In this case, by using similar argument as in the previous case,
only the elements in the subgroup 〈a〉 served as the elements satisfy the condition |x||y| = qs

since |b| = |akb| = 2, for 1 ≤ k ≤ n − 1 and 2 does not divide qs. Thus the pairs of elements in
Dn×Dn whose orders product yields ps are exactlymembers of the collection 〈a〉×〈a〉. Therefore,∣∣∣{(x, y) ∈ Dn×Dn

∣∣ |x||y| = ps
∣∣∣ = ∣∣∣〈a〉×〈a〉}∣∣∣ = n2. Therefore, the order product prime probability

of Dn with respect to q is Pop(q)(Dn) =
n2

4n2
=

1

4
.

There is no other prime factor of |Dn| different from 2 and q. Thus, the proof is complete.

Theorem 3.2. LetDn be a dihedral group such that n = q1q2 where q1 and q2 are distinct primes different

from 2, then Pop(2)(Dn) =
(n+ 1)2

4n2
, Pop(q1)(Dn) =

q21
4n2

and Pop(q2)(Dn) =
q22
4n2

.

Proof: Let Dn = 〈a, b | an = b2 = e, ba = a−1b〉 where n = q1q2, q1 and q2 are distinct primes
different from 2. Then the prime divisors of |Dn| are 2, q1 and q2. Here, each reflection has order
2 and by Lagrange’s theorem all nontrivial rotations have order either q1, q2 or q1q2. However
non of q1 or q2 or q1q2 can be expressed as a power of 2, then from Theorem 3.1, it follows that

Pop(2)(Dn) =
(n+ 1)2

4n2
.

Next, for q1, neither q2 nor q1q2 can be written as powers of q1. Next, the rotation elements of
order q1 need to be determined. In fact |ar| = q1 if and only if (r, q1) = 1. Note that: (r, n) 6= 1,
for if (r, n) = 1, then |ar| = q1q2. Since (r, n) 6= 1, (r, q1) = 1 and r ≤ n − 1 then r = kq2,
k = 1, 2, . . . , q1 − 1. So the elements whose order product gives powers of q1 are exactly members
of the subset S = {e, akq2}where k = 1, 2, . . . , q1 − 1. Therefore,∣∣∣{(x, y) ∈ Dn ×Dn

∣∣ |x||y| = qs1
}∣∣∣ = |S × S| = (q1 − 1 + 1)2 = q21 ,

and hence Pop(q1)(Dn) =
q21
4n2

. Similarly, Pop(q2)(Dn) =
q22
4n2

.

Theorem 3.3. LetDn be a dihedral group with n = 2k, for some positive integer k, then Pop(2)(Dn) = 1.

Proof: Let Dn = 〈a, b | an = b2 = e, ba = a−1b〉 where n = 2k where k ∈ N. Thus |Dn| = 2k+1.
Then by Lagrange’s theorem and the fact that 2 is a prime number, each element in Dn must
be of order 2m for some 0 ≤ m ≤ k. Thus for each x, y ∈ Dn × Dn there exists m, l such that
|x| = 2m and |y| = 2l, 0 ≤ m, l ≤ k. Thus, |x||y| = 2m+l, for each (x, y) ∈ Dn × Dn. Therefore,∣∣∣{(x, y) ∈ Dn ×Dn

∣∣ |x||y| = 2s
}∣∣∣ = |Dn ×Dn| = |Dn|2 and hence,

Pop(2)(Dn) =
|Dn|2

|G|2
= 1.
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Theorem 3.4. Let Dn be a dihedral group such that n = 2q where q is a prime number and q 6= 2, then

Pop(2)(Dn) =
n2 + 4n+ 4

4n2
and Pop(q)(Dn) =

1

16
.

Proof: Let Dn = 〈a, b | an = b2 = e, ba = a−1b〉. Then |Dn| = 4q and 2 divides |Dn|. First, notice
that among the rotations, aq has order 2. Therefore e, aq , b and akb for 1 ≤ k ≤ n − 1, are the
elements, forming a total of (n+ 2)2 pairs, that satisfies |x||y| = 2s. Thus,

Pop(2)(Dn) =
(n+ 2)2

(2n)2
=

n2 + 4n+ 4

4n2
.

Another cases in this theorem is, q divide |Dn|where it is similar to the second case of Theorem 2

and hence Pop(q)(Dn) =
q2

4n2
=

q2

4(2q)2
=

1

16
.

Next, in Theorem3.5, the sufficient andnecessary condition forwhich the probability,Pop(p)(G)
is equal to 1 is given.

Theorem 3.5. G is a finite p-group if and only if Pop(p)(G) = 1.

Proof: (=⇒) Suppose that G is a finite p-group. Since the order of any element in G must divide
|G| = pm (Lagrange’s theorem) and that p is a prime number, then any pair of elements (x, y) ∈

G×G satisfies |x||y| = ps. Therefore, Pop(p)(G) =
|G|2

|G|2
= 1.

(⇐=) Suppose Pop(p)(G) = 1, then the ratio |{(x, y) ∈ G×G||x||y| = ps}|
|G|2

= 1, thus

∣∣∣{(x, y) ∈ G×G
∣∣ |x||y| = ps

}∣∣∣ = |G|2.
That is all pairs of elements (x, y) ∈ G × G satisfies |x||y| = ps. Taking y = e gives |x| = ps, ∀
x ∈ G, hence G is a p-group.

In the previous section, results on the order product prime probabilitywere given. Meanwhile,
as an extension to this probability, another new notion which is the order product prime commu-
tativity degree is defined and some results of the order product prime commutativity degree are
given in the following section.

4 Order Product Prime Commutativity Degree

This section is begin with a new definition of order product prime commutativity degree fol-
lowed by an example of it.
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Definition 4.1. Let G be a finite group. Assume that a pair of elements x, y ∈ G satisfy |x||y| = ps for
some prime p and s is a non-negative integer, then the order prime commutativity degree of G is given as
follows:

Po(p)c(G) =

∣∣∣{(x, y) ∈ G×G
∣∣ |x||y| = ps, xy = yx

}∣∣∣∣∣∣{(x, y) ∈ G×G
∣∣ |x||y| = ps

}∣∣∣ .

Example 4.1. ConsiderD3 = {e, a, a2, b, ab, a2b} where |e| = 1, |a| = |a2| = 3 and |b| = |ab| = |a2b| =
2. Here, if p = 2, then e, b, ab and a2b satisfy |x||y| = 2s, so there will be a total of 16 pairs that is∣∣∣{(x, y) ∈ D3 ×D3

∣∣|x||y| = 2s
}∣∣∣ = 16.

The commuting pairs are (e, e), (b, b), (ab, ab), (a2b, a2b), (e, b), (e, ab), (e, a2b), (b, e), (ab, e) and (a2b, e).
Therefore, Po(2)c(D3) =

10

16
=

5

8
.

If p = 3, then e, a, and a2 as the elements that obeys the condition |x||y| = 3s, forming total of 10 pairs that
commutes, thus Po(3)c(D3) =

10

10
= 1.

Next, in Theorem 4.1, Theorem 4.2, Theorem 4.3 and Theorem 4.4, the order product prime
commutativity degree for dihedral groups are given.

Theorem 4.1. Suppose that Dn is a dihedral group of degree n = 2k for some positive integer k, then
Po(2)c(Dn) =

n+ 6

4n
.

Proof: By using a similar argument as in the proof of Theorem 3.3,∣∣∣{(x, y) ∈ Dn ×Dn

∣∣ |x||y| = 2s
}∣∣∣ = ∣∣∣{(x, y) ∈ Dn ×Dn

}∣∣∣ = |Dn|2 = (2n)2 = 4n2.

As a result and by using Theorem 2.1,∣∣∣{(x, y) ∈ Dn ×Dn

∣∣|x||y| = 2s, xy = yx
}∣∣∣ = |Dn|2P (Dn) = n2 + 6n.

Therefore, Po(2)c(Dn) =

∣∣∣{(x, y) ∈ Dn ×Dn

∣∣ |x||y| = 2s, xy = yx
}∣∣∣∣∣∣{(x, y) ∈ Dn ×Dn

∣∣ |x||y| = 2s
}∣∣∣ =

n+ 6

4n
.

Theorem 4.2. Let Dn be a dihedral group where n is odd integers, then Po(2)c(Dn) =
3n+ 1

(n+ 1)2
.

Proof: LetDn be a dihedral group where n is positive odd integers. Since 2 does not divide n then
elements satisfying |x||y| = 2s are identity element and those elements whose order is 2, that is,
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e and ak−1b for 1 ≤ k ≤ n (which is n + 1 elements all together). These n + 1 elements forming
(n+ 1)2 pairs altogether. The elements {ak−1b : 1 ≤ k ≤ n} commutes with themselves making n
pairs of commuting elements. The elements also commute with the identity element making 2n
pairs of them. Together with (e, e), we have n + 2n + 1 = 3n + 1 pairs altogether of commuting
elements. Therefore, by definition we get

Po(2)c(Dn) =

∣∣∣{(x, y) ∈ Dn ×Dn

∣∣|x||y| = 2s, xy = yx
}∣∣∣∣∣∣{(x, y) ∈ Dn ×Dn

∣∣|x||y| = 2s
}∣∣∣ =

3n+ 1

(n+ 1)2
.

Theorem 4.3. Let Dn be a dihedral group of degree n = 2p where p 6= 2, then Po(2)c(Dn) =
6n+ 4

(n+ 2)2

and Po(p)c(Dn) = 1.

Proof:
Let Dn be a dihedral group where p 6= 2. For p = 2. Notice that an

2 ∈ Z(Dn) and has order 2.
Therefore {e, an

2 , b, akb : 1 ≤ k ≤ n−1} are the elements forming a total of (n+2)2 pairs satisfying
|x||y| = 2s. Out of these e commute with all making total pairs 2(n+ 1) + 1, also n+ 1 commute
with themselves and 3n more pairs commutes.

Po(2)c(Dn) =

∣∣∣{(x, y) ∈ Dn ×Dn

∣∣ |x||y| = 2s, xy = yx
}∣∣∣∣∣∣{(x, y) ∈ Dn ×Dn

∣∣ |x||y| = 2s
}∣∣∣

=
2n+ 3 + n+ 1 + 3n

(n+ 2)2

=
6n+ 4

(n+ 2)2
.

For any p 6= 2, pairs of elements that satisfy |x||y| = ps must come from 〈a〉 and hence
Po(p)c(Dn) = 1 follows immediately.

Next, in Theorem 4.4, the sufficient and necessary condition for which Po(q)c(G) = P (G) is
given.

Theorem 4.4. If G is a p-group such that |G| = qm, where q is prime then Po(q)c(G) = P (G).

Proof:
Since the order of each element in a group divides the order of the group, then each element in
G has the order pi for some 0 ≤ i < m. Thus, for any pair x, y ∈ G × G there exists i, j such that
|x| = pi and |y| = pj , 0 ≤ i, j < m if and only if |x||y| = pi+j . All pairs of elements inG×G satisfy
condition |x||y| = qs, thus

∣∣∣{(x, y) ∈ G×G
∣∣ |x||y| = qs

}∣∣∣ = ∣∣∣{(x, y) ∈ G×G
}∣∣∣ = |G|2 = q2m and

Po(q)c(G) =

∣∣∣{(x, y) ∈ G×G
∣∣ |x||y| = qs, xy = yx

}∣∣∣∣∣∣{(x, y) ∈ G×G
∣∣ |x||y| = qs

}∣∣∣ =
q2mP (G)

q2m
= P (G).
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5 Conclusion

In this paper, twonewgroupprobabilities, one is the product of the order of the group elements
with prime power and the other is the product of the order of the commuting elements and a
prime power are defined. The probabilities are then determined for dihedral groups with certain
degrees.
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